Evolving potassium channels by means of yeast selection reveals structural elements important for selectivity.
نویسندگان
چکیده
Potassium channels are widely distributed. To serve their physiological functions, such as neuronal signaling, control of insulin release, and regulation of heart rate and blood flow, it is essential that K+ channels allow K+ but not the smaller and more abundant Na+ ions to go through. The narrowest part of the channel pore, the selectivity filter formed by backbone carbonyls of the GYG-containing K+ channel signature sequence, approximates the hydration shell of K+ ions. However, the K+ channel signature sequence is not sufficient for K+ selectivity. To identify structural elements important for K+ selectivity, we randomly mutagenized the G protein-coupled inwardly rectifying potassium channel 3.2 (GIRK2) bearing the S177W mutation on the second transmembrane segment. This mutation confers constitutive channel activity but abolishes K+ selectivity and hence the channel's ability to complement the K+ transport deficiency of Deltatrk1Deltatrk2 mutant yeast. S177W-containing GIRK2 mutants that support yeast growth in low-K+ medium contain multiple suppressors, each partially restoring K+ selectivity to S177W-containing double mutants. These suppressors include mutations in the first transmembrane segment and the pore helix, likely exerting long-range actions to restore K+ selectivity, as well as a mutation of a second transmembrane segment residue facing the cytoplasmic half of the pore, below the selectivity filter. Some of these suppressors also affected channel gating (channel open time and opening frequency determined in single-channel analyses), revealing intriguing interplay between ion permeation and channel gating.
منابع مشابه
Functional Characterization of the Cardiac Ryanodine Receptor Pore-Forming Region
Ryanodine receptors are homotetrameric intracellular calcium release channels. The efficiency of these channels is underpinned by exceptional rates of cation translocation through the open channel and this is achieved at the expense of the high degree of selectivity characteristic of many other types of channel. Crystallization of prokaryotic potassium channels has provided insights into the st...
متن کاملPotassium channel structures: do they conform?
Potassium channels are signalling elements vital to vertebrate neurotransmission, and cardiac and renal function. Two inherent qualities equip them for their role in the interconversion of chemical and electrical messages: high selectivity for potassium ions and the ability to open (gate) on cue. The crystal structure of KcsA, published in 1998, explained much about potassium selectivity and hi...
متن کاملA set of homology models of pore loop domain of six eukaryotic voltage-gated potassium channels Kv1.1-Kv1.6.
Homology models of the pore loop domain of six eukaryotic potassium channels, Kv1.1-Kv1.6, were generated based on the crystallographic structure of KcsA. The results of amino acid sequence alignment indicate that these Kv channels are composed of two structurally and functionally independent domains: the N-terminal 'voltage sensor' domain and the C-terminal 'pore loop' domain. The homology mod...
متن کاملK+-Dependent Selectivity and External Ca2+ Block of Shab K+ Channels
Potassium channels allow the selective flux of K⁺ excluding the smaller, and more abundant in the extracellular solution, Na⁺ ions. Here we show that Shab is a typical K⁺ channel that excludes Na⁺ under bi-ionic, Na(o)/K(i) or Na(o)/Rb(i), conditions. However, when internal K⁺ is replaced by Cs⁺ (Na(o)/Cs(i)), stable inward Na⁺ and outward Cs⁺ currents are observed. These currents show that Sha...
متن کاملVoltage Clamp Fluorimetry Reveals a Novel Outer Pore Instability in a Mammalian Voltage-gated Potassium Channel
Voltage-gated potassium (Kv) channel gating involves complex structural rearrangements that regulate the ability of channels to conduct K(+) ions. Fluorescence-based approaches provide a powerful technique to directly report structural dynamics underlying these gating processes in Shaker Kv channels. Here, we apply voltage clamp fluorimetry, for the first time, to study voltage sensor motions i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 13 شماره
صفحات -
تاریخ انتشار 2004